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Statistical models dll

z=1f(u|w) vV —errore su z

v=z,—z=z,—flu|w)

What happens if u is not exactly known but it is extracted from a statistical
distribution?

How can we compute the most likely value of u from z,,? Or of z,, given u?
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Teorema di Bayes dl

P(X,Y) =P (YX)P(X) = P(X[Y)P(Y)

Py - PO TOPX)
P(Y)
X = causa Y = effetto
_ P(Effetto | Causa) P(Causa)
P (causaleffetto) P(Effetto)
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We usually do not know the statistics of the cause, but we can measure the effect
and, through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)
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Variabili continue Lf‘a.‘u

Caso discreto: prescrizione della probabilita per ognuno dei finiti valori che la
variabile X pud assumere: p(x).

Caso continuo: i valori che X puo assumere sono infiniti. Devo trovare un modo
per definirne la probabilita. Descrizione analitica mediante la funzione densita di
probabilita.

Valgono le stesse relazioni del caso discreto, dove alla somma si sostituisce
I’integrale.

p(x,y)=p(y|x) p(x)=p(x|y) p(») Teorema di Bayes
p(x|y)= M Problema x = causa (o parametri del modello)
- Inverso y = effetto
()
ke 5/71 http:\\borghese.di.unimi.it\
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e
Obbiettivo ﬁ
Determinare i dati (la causa, u) piu verosimile dato un insieme di misure z,,, dato
un modello {w}.

V - noise
5 /> 4
——>] > R ——

y = Ax se il modello ¢ lineare
Inverse problem: determine cause {u} from {z},{w} — utilizzo backwards

Dato z,, posso determinare quale u sia la causa piu probabile non solo data la
statistica di v ma anche data la statistica di u.

A.A. 2025-2026 6/71 http:\\borghese.di.unimi.it\
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Images are corrupted
by noise...

Esempio:

i) When measurement of some physical parameter is
performed, noise corruption cannot be avoided.

ii) Each pixel of a digital image measures a number of
photons.

Therefore, from i) and ii)...
...Images are corrupted by noise!

How to go from noisy image, y,, to the true one, x?
This is an inverse problem (true image is the
cause, measured image is the measured effect).

A.A.2025-2026 771
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Example: Filtering (denoising) %

0 X={X], Xp..., Xy}, X € RM e.g. Pixel true luminance

0 Vo= V> Yizoe - YoM} Yax € RN e.g. Pixel measured luminance (noisy)

o -> Determining x is a denoising problem (the measuring device introduces only
measurment error) y = Ax =>y = Ix.

Role of I:
Identity matrix. Reproduces the input image, X, in the outputy.
Role of v: measurement noise.

0 Y,=ytv=Ixtv

Determining x is a denoising problem (image is a copy of the real one with the addition of noise)

A.A.2025-2026 8/71 http:\\borghese.di.unimi.it\
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Esempio piu generale (e.g. deblurring) %

0 X={Xp, Xppeeer Xpp)s X € RM e.g. Pixel true luminance

O Ve = Yl Yazoes Yam) Yok € RN e.g. Pixel measured luminance (noisy)

i Yy,=y+v=Ax+v+h ->determining x is a deblurring problem (the measuring device
introduces easurment error and some blurring)

o This is the very general equation that describes any sensor.

Role of A:
Matrix that produces the output y; as a linear combination of other values of x.

Role of h: offset: background radiation (dark currents) has been compensated by calibration,
regulation of the zero point.

Role of v : measurement noise.

o Yp=ytV=AXxtv after calibration y=1x|w) '\ - noise

% y /74 Y

Given the measurements {y,} we want to

compute the most likelihood set of data {x}

A.A.2025-2026 9/71 http:\\borghese.di.unimi.it\
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Gaussian noise and likelihood

o Images are composed by a set of pixels, x

o Let us assume that the noise is Gaussian and that its mean and variance is equal
for all pixels;

o Let us suppose that noise on the pixels is independent.
o Lety,; be the measured noisy value for the i-th pixel;
o Let x; =y, be the true (noiseless) value for the i-th pixel;

o How can we quantify the probability to measure the image x, given the
probability density function for the measurement of each pixel y,?

o Which is the joint probability of measuring the set of pixels: ¥ ,eee Ynn?

A.A.2025-2026
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Gaussian noise and likelihood g

o » Images are composed by a set of pixels, x

o Let us assume that the noise is Gaussian and that its mean and variance is equal for all
pixels;

o Let us suppose that noise on the pixels is independent.

o Lety,; be the measured noisy value for the i-th pixel;

o Let x; =y; be the true (noiseless) value for the i-th pixel;

o Being the pixels independent, the total probability can be written in terms of product of
independent conditional probabilities (likelihood function) L(y, | y) = L(y, | x) :

L(yn|X)—1_[P(}’nL|x) l_[a ¢ [ (%)2]

= y
o L(y,| x) describes the probability to measure the image y, (its N pixels), given the noise
free value for each pixel, {x}.

o But we do not know these values....

A.A.2025-2026 11/71 http:\\borghese.di.unimi.it\
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Do we get anywhere with L(.)? %

L is the likelihood function of Y, the image measured by the camera, given the object X, the

true image.
L(y,|x)= Hp(yn, %)

Determine {x;} such that L(.) is maximized. Negative log-likelihood is usually considered to
deal with sums instead of products:

£()=—log(L() = Zln( (,.1x))

min() - ?,?;‘{ - % (In(gm=) + 35 O — F0)2)] s
mint) =min{ — 3 (in (17755) + 53 0w = 20%)} y=x = y=x+n

If the pixels are independent, the system has a single solution, that is good. The solution is
X; = y,;» Ot a great result (the noisy image itself)....

Can we do any better?

£ mi.it\
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A better approach ﬂ
L(y,|x)= ]é[p(y,l,i x,)

We have N pixels, for each pixel we get one measurement.

Let us analyze the probability for each pixel i indipendently: p(y,,.i | x,.). If we have more
measurements for each pixel. For each pixel, we can write:

Let us analyze the pixel i. If noise is independent, Gaussian, zero mean, the best estimate of
x; is the samples average, this converges to the distribution mean of the measurements in
the position i.

M
. . 1
min(f.)) = mm{ - Zi (; ni — xi)z)} Xi = Z Yn ki
k
From variance analysis, the accuracy of the estimate increases with ¥/M with M number of
samples of the same data. The variance increases linearly with 2, but decreases with M.

But, what happens if we do not have such multiple samples or we have a few samples?

A.A.2025-2026 13/71 http:\\borghese.di.unimi.it\
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Overview e
4

Statistical filtering
MAP estimate
Different noise models
Different regularizators

Clique
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The Bayesian framework ﬁ

We assume that the object x is a realization of the “abstract” object X that can be
characterized statistically as a density probability on X. x is considered extracted
randomly from X (a bit Platonic).

The probability p(y,| X) can be viewed as a conditional probability: p(y,| x = x*)
That is x will follow also a probability distribution. We will have p(x) = ....

Under this condition, the probability of observing y, can be written as the joint probability of
observing both y, and x. This is equal to the product of the conditional probability p(y, | x)
by a-priori probability on X, p(x):

P x)= Py, [ X)p(x)

http:\\borghese.di.unimi.it\
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The Bayesian framework ﬂ

The probability of observing y, can be written as the joint probability of observing both y,
and x is equal to the product of the conditional probability p(y, | x) by an a-priori
probability on x, p,:

p(y,, x)= P, [X)p(x)

As we are interested in determining x, inverse problem, we have to write the conditional
probability of x, having observed (measured) y, : p(x | y,). We apply Bayes theorem:

plx|y,)= 2L 0P _ 5
p(v,)

where p(y,| x) is the conditional probability: J, = p(y,| x = x*)

http:\\borghese.di.unimi.it\

16

26/01/2026



il
MAP Estimate fz 4]
Vogliamo trovare il valore dei dati {x} piu probabile congruente con le misure {y}:

p(x)
p(Vn)

m)gx{p(xlyn)} = mgXP(anx)

14 (Xi)
P(Yni)

max{ (xly,)} = max | [ p @)

A.A.2025-2026 17/71 http:\\borghese.di.unimi.it\
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MAP Estimate ke

plxly, )= P, |X)p(x) _ Ly, | %) p(x)

p(,) p,) Inab/c) = In(a) + In(b) — In(c)

Cin(p(xly,))=—tn] PO DPE)

Logarithms help: (
{ r(y,)

}:—{ln(p(yn %)) +1n(p(x))-In(p(y,))}

We maximize the p(x | y,), by minimizing:

argmin - {ln(’WJ} =argmin —{in(p(y, |0)+1n(p(x)) - (X))}

We explicitly observe that the marginal distribution of y,, p(y,), is not dependent on x. It does
not affect the minimization and it can be neglected. It represents the statistical distribution of the
measurements alone, implicitly considering all the possible x values.

Maximizing p(x | y,) is called Maximum A-Posteriori Estimate — MAP (we callect the
measurements yn and then we estimate x taking into account also the information on x).

18
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MAP estimate components

We maximize the MAP of p(x | y,), by minimizing:

argmin —{in(p(y, | x)p(x))}=argmin - {ln(p(y, | x)+In(p(x))}

R
A-priori

JO(yn,i | x)

Adherence to the data for
each x value (conditional
probability)

Depending on the shape of the noise (inside the conditional probability) and the a-priori
distribution of x(.), Jy(x), we get different solutions.

. x //// J\Z;}\

_: }u

dll

probability on x

A.A.2025-2026 19/71 http:\\borghese.di.unimi.it\
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x=argmin - {ln(p(y, | ¥)p))}=argmin - {in(p(y, |x)+In(p(x))} =
argmin ,(y, |x)+J,(x)}=

* Gaussian noise on the data 1 2
* Zero mean Jo(v, %)= costante+(o_2j[z Vi = AX; ]
+ All measurements have the same yariance, c,> ‘

* Pixels are independent

* y=Ax - deblurring problem (A #|I) Yi

1
-log (p(¥, [ X)) = Jo(yn|x) = cost + <;> ZIIAxi — ||’

Mean squared error — errore empirico

What about Jz(x) = -log(p(x))?

20

e
Gaussian noise on samples :z,g

A.A. 2025-2026 20/71 http:\\borghese.di.unimi.it\
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Gibb's priors for p(x) s

dll
We often define the a-priori term, Jz(x), as Gibb’s prior:
1 1
1 —EU(X) 400 ——U(x)
p.=_+e€ Z = j e” dx
Z bt
Integrale = 1
U(x) ¢ solitamente > 0
E’ una funzione esponenziale decrescente che ¢ massima quando U(x) ¢ minima
(max eV® si ha quando U(x) = 0)
U(x) sara percio minimo per le realizzazioni di x (dell’immagine) piu probabili.
U(x) ¢ chiamato anche potenziale => potenziale minimo per realizzazioni piu probabili.
A.A. 20252026 21/71 http:\\borghese.di.unimi.it
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. ] . " 1:..
Gibb's priors for p(x) g
ail
We often define the a-priori term, Jg(x), as Gibb’s prior:
—lU( ) 1
ﬂ X ~+00 _EU (x)
p.=_1€ Z=\e dx
Z o
Considerando il negativo del logaritmo di p(x):
1
J o (x)=—In( X)=+1n(Z)+ﬂU(x)
= Jr(x) is a linear function of the potential U(x). It is minimum when U(x) is minimum.
Z does not depend on x => it is constant
B is a constant that provides a scale to Jy(x).
B Explains how p(x) decreases with the decrease of the probability of x, described by U(x)).
AA-2025-2026 2/71 http:\\borghese.di.unimi. it
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A-priori types - p(x) jzjy

p(x) describes the probability of having a certain type of data X. In this case it describes
the probability of having one image or another.

o It can be the amplitude of the signal defined in terms of power.

o It can be the geometrical structure defined in terms of variations (gradients)
o It can be information gathered from the neighbour data (e.g. clique).

o Any statistical information on the distribution of x.

o It can be a morphable model

A.A.2025-2026
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MAP estimate components :

We maximize the MAP of p(x | y,), by minimizing:
argmin —{in(p(y, | x)p(x)}=argmin - {ln(p(y,

y=fix|w)

JO(yn,i \x) JR(x)

A-priori

Adherence to the data for .
probability on x

each x value (conditional
probability)

Depending on the shape of the noise (inside the joint probability) and the a-priori
distribution of x(.), J(x), we get different solutions.

A.A.2025-2026
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We choose as a-priori term the squared norm of the function x, weighted by P: U(x) = ||Px?||

(et

1
p(x :E e Jr(x) = -log(p(x)) = log(Z) + (1/B) |IPx?||

Nel caso del filtraggio: P =1, peso tutti i pixel dell’immagine allo stesso modo (P =1)

Tr(x) =-log(p(x)) = log(Z) + (1/B) |’

Non voglio pixel che “sparino” — non voglio avere dati con valori troppo piu elevati degli
altri, questi sono improbabili (alto potenziale U(x), basso valore di Jx(x) ).

La probabilita a-priori ¢ distribuita come una Gaussiana.

A.A.2025-2026 25/71 http:\\borghese.di.unimi.it\

p(x) in the Ridge regression ﬁ

25

'; “v-n
1P|z
1 Z 1
. 2
X = argmin Z P ||Axi - yn,i” + Ezllpiixi || unzione costo quadratica
X [o] 7

i
JO(yn,i |x) JR.(X.)
Adherence to the data for A-priori

each x value (conditional probability on x
probability)

Map estimate with U(x)

In forma matriciale:

1 1
X = argmin <_z (Ax —y)? +— (Px)2>
X 0-0 ﬁ

A.A. 2025-2026 26/71 http:\\borghese.di.unimi.it\
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MAP estimate with U(x) = ||Px]|? ﬁ

x = argmin E — ||Ax; =y, = E X
gx O_g L yn,l ﬁ : pll L

i

1 1 Funzione costo quadratica
X = argmin <—2 (Ax —y)? + = (Px)2>
X O-a ﬁ

Derivo rispetto a x per calcolare il minimo:

x:ATAx — ATy, + APTPx = 0 => ATy, = (ATA + APTP)x

|

JO(yn,i |x) Jr
Pongo A = o2 /B

Without A PT P large values of x are obtained where ATA is small. These are reduced by A PT P

A.A.2025-2026 27/71 http:\\borghese.di.unimi.it\
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25
Map estimate with U(x) = ||Px]||? jﬁ

. 1 2 1 2
X = argmin Z — ||Axi - yn,i” + _Z”Piixi || unzione costo quadratica
* %0 B 7
x:ATy, —A"Ax - AP"Px=0 => A"y, =(4"A+AP"P)x

x = (ATA+APTP) 1 ATy ---

(diventa risolubile anche quando A ¢ singolare! — norma minima della soluzione)

(ottengo una soluzione che «scoraggiay i valori elevati di x).

(per A = 0 ritorno alla soluzione con la pseudo-inversa, massima verosimiglianza;
non tengo conto del termine a-priori).

A.A. 2025-2026 28/71 http:\\borghese.di.unimi.it\
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Approccio algebrico ﬁ

Ax=b+N > =|lAx-b|}
k

2
Axi = vl =) x=(ATA)!Aly,

x=argmin Z|
X 7

Se la matrice di covarianza ha determinante vicino a zero (¢ mal condizionata) la soluzione
puo variare molto con il variare dei dati. Otteniamo un modello la cui validita al di fuori
dei dati gia disponibili ¢ molto limitata sui dati che si potranno collezionare in futuro.

Problema mal posto (Hadamard).

- Esiste una soluzione

- La soluzione ¢ unica

- Varia con continuita con i dati (se ATA ¢ vicino alla singolarita, il problema ¢ mal posto)

Come possiamo stabilizzare la soluzione?

A.A.2025-2026 29/71 http:\\borghese.di.unimi.it\
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e
Approccio algebrico: regolarizzazione If‘u.'u

Ax=b+N dv=|Ax-b|}
k

X= argmin ZHA*,ixi - yn,illz [ — X:(ATA)-IATyrl
X -
i

We add a penalty term to the solution that expresses the desired characteristics

of the solution.
) 2 2
x = arg}rcmn Z”Axi - yn,i” + AZ”Pxi ||
i i

This is the Tikhonov regularization (1963) or ridge regression.

It is the same cost function obtained when maximizing the MAP with Gibbs prior
and quadratic potential function.

A.A. 2025-2026 30/71 http:\\borghese.di.unimi.it\
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Which is the most ade uate p(x) for “7
images? 9 P(x) ﬂ

We are very interested to borders, structure. This has to deal with gradients.
=> we look at differential properties.

We look at the local gradient of the image: Vx (variazioni spaziali).

One possibility is to use the square of the gradient as a regularizer ( o come
funzione potenziale): || Vx ||

This is another form of Tikhonov regularization.

A.A.2025-2026
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Differential Gibbs prior el

1 [—1U(x)) 1
+00 “U(x)
p,=_1e "’ Z= j e? dx

VA

Ux)= || Vx|

argmin {(4x-y, F|+4[vaf’|

x: 247 (Ax—y,)+2AVx|=0

System of M linear differential equations. How does it become in the discrete case?

A.A.2025-2026

32
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Differential Gibbs prior

[+ v

argmin {(4x-y,)
x: 247 (4x—y,)+24Vx}=0
If we apporximate Vx with the finite differences, one possibility is the following:

|| in,j sz(xiﬂ,j — xi—l,j )2 + (xi,j+1 — xi,j—l)z Centered discrete gradient

arg min {Z Z(Aji‘xi -y )2 +4 ((‘xi,j+1 X )2 + (xi+l,j - xi—l,j)z) }
X Joi

Si puo calcolare la derivate della somma, derivando per ciascun elemento x e
ponendo la derivate uguale a zero. Diventa un sistema lineare.

A.A.2025-2026 33/71
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A priori term - image gradients
(no nouse%

, g

Py = P(is) - p(-1J)

A.A.2025-2026 34/71
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A priori term - image gradients %
P (with n‘isge) g %

xi:j_l

A.A.2025-2026 35/71 http:\\borghese.di.unimi.it\
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A priori tferm - norm of image :
P gradient I %

NO nhoise Noise

In the real image, most of the areas are characterized by an (almost) null gradient norm.
When noise is added, local gradients appear everywhere in the image (real case).

We can_for_instance suppose that the noise is a random variable with Gaussian
distribution, zero mean and variance equal to B2 (sampling noise).

Which is the best approach to clean noise (e.g. to recover the true value of x)?

A.A. 2025-2026 36/71 http:\\borghese. di.unimi.it
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MAP estimate components 2
[

We maximize the MAP of p(x | y,), by minimizing:

argmin - {In(p(y, | )p(x)} =argmin - {in(p(y, | )+ In(p(x))}

X X

Adherence to the data for
each x value (conditional
probability)

A.A.2025-2026 38/71

JO(yn,i‘/x; Jb

A-priori
probability on x

http:\\borghese.di.unimi.it\
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Tikhonov regularization A

argmin <Z 4xi = yill* + 2 ) [|Px; ||2> Ridge regression
X = =
L L
. 2 2
arg)rcnm <Z||Axi - yn‘i” + AZ”V}Q || >
i i

It is a quadratic cost function. We find x minimizing with respect to x the cost function.

=
I

=
Il

This approach is derived in the domain of mathematics. It leads to the same cost
function of the MAP approach.

A.A.2025-2026 39/71 http:\\borghese.di.unimi.it\
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Departing from Tikhonov ‘”J,

<

regularization: dlffer'en'l' noise models

argmin —{n(p(y, | x)p(x)}=argmin - {in(p(y, | x))+In(p(x)}

JO(yn,i |x) JR(x)

Adherence to the data for
each x value (conditional
probability)

Two actors;
- Sl x) Conditional probability of having the measurements given a certain input.
- We can have different noise models.

Jo(x) - Probability of having a certain solution.
- We can have different regularizers

A.A. 2025-2026 40/71 http:\\borghese.di.unimi.it\
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y=1f(x|w) v - noise

y=1x)=>y=Ax

Gaussian noise: Square regularization

Tikhonov Jyi1x) = lAx=b |7 Ju(x) =B [PxY
Ridge regression  Jo(y, | x) = [lAx—=b > Jelx) =(1/B) %2

JO( n,i |x):2i ”Axi - yn,illz Empirical error

In caso di rumore di Poisson?

1
Different noise models Lf‘a.u

A.A.2025-2026 41/71 http:\\borghese.di.unimi.it\
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—

Vi=llAX =y, |

We know the statistical distribution of the noise inside the condltlonal probability of y,;
glVen X. 519 ° )

—tx, N
Ax. )" P -
For one pixel: p(y,; | x;) = {(')} O ol ¥

@10
n;

y:Ax

—IH(L(ynéX))=—ln(Hp(yn,i;xf)J = (~4x,+y,, In(4x)~In(y,,1))

i=l1

To eliminate the factorial term, we normalize the likelihood by L(y,, y,):

L(y,»,)

i=1

N
(L(yn ,X) J Z In(Ax)—In(y,)+y, — Ax) = KL divergence

It is not linear!

_ Zyn ln( Yo | Ax— ynj It ?s nota distance!
- Ax

42

KL and the Poisson noise ffﬁ

A.A. 2025-2026 42/71 http:\\borghese.di.unimi.it\
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Tikhonov regularization - simulations %

D& hRAN® ¢ 0E =0

Original Iter = 50 - Solution - F = 212974741.5369

Denoising effect - lambda = 0.1p = 2

10
2000 o
—
1000 Fre
15 e F
oaTa
K \
w 1
1000
0s
2000 T
3000 o

0 5 10 15 20 25 30 35 40 45 50
niter

Edge smoothing effect with Tikhonov-like regularizator (P(x) =|| Vx ||?)

Poisson noise on the image — A = 0.5. KL is applied in the first term.
P is the gradient operator

A.A.2025-2026

43/71 http:\\borghese.di.unimi.it\

43

Tikhonov regularization - panoramic ima%

DEES k RQAO®|E 0 =0

Original Iter = 20 - Solution - F = 120825433.9031
= —

’

a 4 4
1
3 |I r ¢ |
Denoising effect - lambda = 0. 5p = 2 x10°
200 - 3
35 E
100 B =
S FDATA
5 25
oy 51
100 15 MmN
200 !
05
300 0

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A = 0.5. KL is applied in the first term.
P is the gradient operator
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ikhonov regularization - endo-oral imag%

DFEESE k|RQAVD|E 0B =0

Original iter = 20 - Solution - F = 97594716548
_— .
Denoising effect - lambda = 0.1p = 2 X107
200 5
\ —F
100 4 Freo
\ Foamn
o 3
w
100 2
200 i

0 2 4 6 8 10 12 14 16 18 20
niter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A = 0.1 (less regularization)

KL is applied in the first term.

P is the gradient operator
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Overview =
Statistical filtering
MAP estimate
Different noise models
Different regularizators
Clique
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15
Departing from Tikhonov A
regularization: dlffer'en‘r regularizers
argmin - {ln(p(y, | x)p(x))}=argmin - {in(p(y, | )+ In(p(x))}
']O(yn,i |x) JR(x)
Adherence to the data for
each x value (conditional probability)
Two actors:
- J, (yn.i \ x) Conditional probability of having the measuremenits given a certain input.
- We can have different noise models.
Jx) - Probability of having a certain solution.
g - We can have different regularizers
A.A. 20252026 47/71 http:\\borghese.di.unimi.it
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probability)
212 4 42 + 2
xi + x5 + . Xp
i
Norma 1, di x
La norma 1, di x ¢ minima.
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Non-quadratic a-priori: :'Z 'l
norm |,

argmin —{n(p(y, | x)p(x)}=argmin - {in(p(y, | x))+In(p(x)}

JO(yn,i |x) JR(x)

Adherence to the data for
each x value (conditional

48
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Non-quadratic a-priori: J'?:*
’?o‘ral var'ia‘rio% jzl‘z

argmin —{in(p(y, |x)p()}=argmin —{in(p(y, | 1))+ In(p(x);

JO(yn,i |x) JR(x)

Adherence to the data for
each x value (conditional
probability)

2
Jx) = \/Axlz + Ax3 + ... Ax}

Norma 1, delle variazione di x o variazione totale di x (total variation)
Il modulo della somma degli incrementi (in valore assoluto) di x ¢ minima.
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%
Different a-priori ﬁ

y=fix|w) v - noise

=3
=

y=1{x)=>y=Ax

Noise model Gaussian Regularizer
Tikhonov Jo(yn,i |x) = ||Ax—b||2 Je(x) = (1) P2
Ridge regression JO(yn,i \x) = |lAx=b ||2 Jo(x) =) I

1, (total. Var.iation) Jo(ym |x) =||dx-b | Jo(x) = (l/B)ZJm
regularization ’

Lasso regression JO(yn,i |x) = | dx—b]|? Jelx) =(1B) (lm‘ [+lax |+t ‘Ax”l)

A.A. 2025-2026 50/71 http:\\borghese.di.unimi.it\
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Cost introduced by the reqularization term %

9

; ; : — p=2 (Tikonov)
8 i — Pt

i i i
0 05 1 15 2 25 3
[Igrad(g)|

Cost increases quadratically with the local gradient in Tikhonov
Cost increases linearly with the local gradient in Total Variation (TV)

For this reason TV regularizer is considered “edge preserving” (structure preserving)

A.A.2025-2026
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Tikh larizati imulati :
Ikhonov regularization - simulations =4
D& hRAN® ¢ 0E =0
Iter = 50 - Solution - F = 212974741.5369
Noise is removed .
but
blurring is
introduced
Denoising effect - lambda = 0.1p = 2 x10°
12000 2
—F
1000 \ Free
12 FDATA
: \
w 1
-1000
2000 85 T
3000 0 ]
0 5 10 15 20 25 30 35 40 45 50
niter
Edge smoothing effect with Tikhonov-like regularization
Poisson noise model — A = 0.5
P is the gradient operator
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A.A.2025-2026

D& KRN 08 =0

Iter = 50 - Solution - F = 1767624.3724

Noise is removed

and
no appreaciabl
blurring is
introduced
Denoising effect - lambda = 0.1p = 1 4 10°
—F
25 Fres
3 \\\ o Foata
P~ B sp
(S S

0 5 10 15 20 25 30 35 40 45 50
niter

No appreciable edge smoothing with total variation regularizer
Poisson noise model - A =0.5
P is the gradient operator
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dll

otal variation regularization - simulatio%

A.A.2025-2026

Tikhonov regularization - panoramic ima%

DEES k RQAO®|E 0 =0

Original Iter = 20 - Solution - F = 120825433.9031

—

»

4 -
{ -
Denoising effect - lambda = 0. 5p = 2 x10°
200 - 3
35 E
100 B =
S FDATA
5 25
oy 51
100 15 MmN
200 !
05
300 0

0 2 4 6 8 10 12 14 16 18 20
niter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A = 0.5
P is the gradient operator
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A.A.2025-2026

tal variation regularization - panorami

DeE&a h aa"s v 0E =

images %

Original fter = 20 - Solution - F = 4386075.6946

]

Denoising effect - lambda = 0.5p = 1 x10

—F
3
3

REG

DATA

DS S

0 2 4 6 8 10 12 14 16 18 20
niter

No appreciable edge smoothing with total variation regularizer
Poisson noise model - A = 0.5

P is the gradient operator
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A.A.2025-2026

‘Tikhonov regularization - endo-oral imag%

DEES k RQAO®|E 0 =0

Original fter = 20 - Solution - F = 9759471.5548

Denoising effect - lambda = 0.1p = 2 x10

—F
4 \ Feec

\ —
3

1 ===

0 2 4 6 8 10 12 14 16 18 20
niter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.1
P is the gradient operator
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Total variation - endo-oral images * f

DFEESE k|RQAV® € 0B =0

Original Iter = 20 - Solution - F = 1373459.5776

- *
Denoising effect - lambda = 0.1p = 1 x10°
2
80 —F
50 Frea
10 15 oo P
DATA
120
o L | S
20
40 05
-60 r
50

0 2 4 6 8 10 12 14 16 18 20
niter

No appreciable edge smoothing with total variation regularizer
Poisson noise model - A = 0.1

P is the gradient operator
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Tikhonov vs. TV (preview) Al

Filtered image

Difference

Tikhohov =>

Qriginal image

W0 B0 20 20 %0 %0 40 40 50

0 20 20 30 %0 4

TV =>

W0 0 0 20 %0 90 0

B 20 20 a0 %0 4

A.A.2025-2026
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Open problems in TV dll

o Better images with TV regularizer, but:
Non linear cost functions (non quadratic) also with Gaussian noise model

v, —AxH2 +A /Zplxmzj
P

Minimization does not lead to a linear function (because of the square root) =
It requires non-linear iterative minimization.

x=argmin Z(

The derivative of a square root provides a function of the type k/sqrt(.)
Singularity inx =0 > x £ 0

We can use algorithms for constrained minimization (e.g. for images, the solution
should stay inside the first quadrant, e.g. split gradient -> x>0 for all pixels).

A.A.2025-2026 59/71 http:\\borghese.di.unimi.it\
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How to set the regularization fl
parameter (A = 1/B)

J(f) = J,(f)+A(f)

argmin —{in(p(y, | x)p(x)}=arg min —{in(p(y, | )+ n(p(x))}

x

Noise model Gaussian Regularizer
Tikhonov Jo(yn,i |x) = ||Ax—b||2 Je(x) = (1) P2
Ridge regression JO(yn,i \x) = |lAx=b ||2 Jo(x) =) I

1, (total. Var.iation) Jo(ym |x) =||dx-b | Jo(x) = (l/B)m
regularization ’

Lasso regression Jo()/n,,- |x) =|ldx-b|’ JR(x) =(1/B) ('Ax‘ [+ 18z |+t ‘A"ND
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J(x) = Jo(x) + Mp(x)

A incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost (B)

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),
but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.

A.A.2025-2026 61/71
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How to set the_regularization
parameter - GauSsian case

Analysis of the residual after the estimate n = y- Ax
* The residual should be distributed as the noise distribution

Gaussian case:
Start with A = 0 -> x minimizzera la likelihood J(x) = 0 (n = 0).

i ion? No!! )
Is this a good solution? No!! 1) = [Ax—b ||2+7» Ax? + 03 + A
J(x) = Jo(x) + AJp(x)

We are reconstructing the data and the error. The latter is usually rapidly varying
(e.g. grain images)

We get a better result if we throw away from x the error. This happens when n # 0.
Increasing A, we penalize rapid variations -> J(x) increases, n increases -> it
approaches the shape of the measurement error.

We stop when

(r,r)= 22 (| = o?)
» Sample covariance is equal to distribution covariance
* Average value of the residual is zero,

i]} —

Ni

imi.it\
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How to set the regularization f
parameter - PoiSson case
Analysis of the residual after the estimate n =y - Ax
» The residual should be distrubuted as the noise distribution
Poisson case:
» 1 tends to be larger, the larger is x;.
+ Misincreased until [|r]|2/ n-> 1 (the mean is equal to variance)
0.40 .
0.351 %9 ° A=1
030f | * A=4 ]
. . \ o A=10
1 parametro (media = varianza): z 0250 | 1
I |
2 020F  Lee
p=c’ “o015 o @
T \ o0
otof /| &f "\-)\U
o0s| 1 & % o
0.00L2 oo Mwaan.o®ooc.
o 5 10 15 20
k
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Overview

Statistical filtering
MAP estimate
Different noise models
Different regularizators

Clique
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A-priori on cliques i
A1)

We can insert in the a-priori term all the desirable characteristic of the image: local smoothness,
edges, piece-wise constancys,....

The idea of defining a neighboring system is a natural one:

Neigbour region of Sy

Images have a natural neighbouring system: the pixels structure. We want to consider the local
properties of the image considering neighboring pixels (in particular differential properties -
our vision system is particularly tuning to gradients both spatial and temporal). Ideas have
been borrowed from physics.

A.A.2024-2025 65/64 http:\\borghese.di.unimi.it\
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Neighboring System ﬁ

Let P be the set of pixels of the image: P = {p,, p,, ... pp}

The neighboring system defined over P, S, is defined as H= { V]| p, Vp € P}, that has
the following properties:

An element is not a neighbour of itself: p, & A,

Mutuality of the neighboring relationship: p, € A, € > p; € M,

(S, P) constitute a graph where P contains the nodes of the graph and S the the links.

Depending on the distance from p, different neighboring systems can be defined:

o o (4]

o X (0]

0 o o ()
First order neighboring System Second order neighboring System
4-neighboring System 8-neighboring System
A-A. 2024-2025 & £y 66/64 & >y http:\\borghese.di.unimi. it
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Clique .

single pair @
6-Neighbors

= & o) By

triple quadrupla

m Sil SlESN §

A clique C, for (S, P), is defined as a subset of sites in S.

I can considered ordered sets of voxels, that are connected to p through S.

Types of cliques: single-site, pairs of neighboring sites, triples of neighboring sites,... up to
the cardinality of A

10-Neighbors
System

A.A.2024-2025
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Markov Random Field

Given (S, P) we can define a set of random values, {fi(p)} for each element defined by
S, that is in f]\fp. Therefore we define a random field , ‘F, over S:

FN) = {fi(m) |m e N } Vp

A

Under the Markovian hypotheses:
P(f(p)) 20 Vp Positivity
P(f(p) | g(P-{p}) =P(flp) | g(N,)} Markovianity

2 expresses the fact that the probability of p assuming a certain value, f (e.g. a certain
gradient), is the same considering all the pixel of P but p or only the neighbor pixels
is the same, that is the value of f depends only on the gray value of the pixels in N,

the random field F is named Markov Random Field.

A.A.2024-2025 68/64
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A “potential” function, ¢(f), can be defined for a MRF. This is a scalar value that is a
function of the random value associated to the pixels for all the possible elements of
a clique:

o= > f(p,)

Jjec

If we consider all the possible cliques defined for each element p, we can define a
potential energy function associated to the MRF:

U= .40

ceC

The higher is the potential energy, the lower is the probability that the set of random
values of the elements of the cliques is realized, that is the higher is the penalization
for the associated configuration.

Energy in a Markov Random Field jﬁ
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Gibbs prior C

If we consider all the possible cliques defined for each element p, we can define a
potential energy function associated to the MRF:

u =Y ¢.(f)

ceC

The higher is the potential energy, the lower is the probability that the set of random
values of the elements of the cliques is realized, that is the higher is the penalization
for the associated configuration.

This is well captured by the Gibbs distribution, that describes the probability of a
certain configuration to occur. It is a function exponentially decreasing of U:

o)

P(H= —e
() 7

P(f) is a Gibbs random field, Hammersley-Clifford theorem (1971). 3 regulates the
decrease in probability and it is associated with temperature in physics. Z is a
normalization constant. NB to define Gibbs random fields, P(f) > 0, P(f) = 0 U(f)

-2 oo: there are not configurations with 0 probability.
A.A.2024-2025 70/64
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