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Statistical models

{w}

u z

z = f(u | w)

zm

 –errore su z

{w}

 = zm – z = zm – f(u | w)

What happens if u is not exactly known but it is extracted from a statistical 

distribution?

How can we compute the most likely value of u from zm? Or of zm given u?
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Teorema di Bayes

P(X,Y) = P (Y|X)P(X) = P(X|Y)P(Y)

P (X|Y) 

)(

)()|(

YP

XPXYP
=

P (causa|effetto) 

X = causa Y = effetto

)(

)()|(

EffettoP

CausaPCausaEffettoP
=

We usually do not know the statistics of the cause, but we can measure the effect 

and, through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)
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Variabili continue

Caso discreto: prescrizione della probabilità per ognuno dei finiti valori che la 

variabile X può assumere: p(x).

Caso continuo: i valori che X può assumere sono infiniti. Devo trovare un modo 

per definirne la probabilità. Descrizione analitica mediante la funzione densità di 

probabilità.

Valgono le stesse relazioni del caso discreto, dove alla somma si sostituisce 

l’integrale. 

)()|()()|(),( ypyxpxpxypyxp ==

)(

)()|(
)|(

yp

xpxyp
yxp =

x  =  causa (o parametri del modello)

y  =  effetto

Teorema di Bayes

Problema

Inverso
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Obbiettivo
Determinare i dati (la causa, u) più verosimile dato un insieme di misure zm, dato

un modello {w}.

y = Ax se il modello è lineare

Inverse problem: determine cause {u} from {zm},{w} – utilizzo backwards

Dato zm posso determinare quale u sia la causa più probabile non solo data la 

statistica di  ma anche data la statistica di u.

{w}

u z

y = f(x | w)

zm

 - noise

x/ / y / yn

{w}
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Images are corrupted
by noise…

Esempio:       

i) When measurement of some physical parameter is 
performed, noise corruption cannot be avoided.

ii) Each pixel of a digital image measures a number of 
photons.

Therefore, from i) and ii)…

…Images are corrupted by noise!

How to go from noisy image, yn, to the true one, x? 
This is an inverse problem (true image is the 
cause, measured image is the measured effect).
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Example: Filtering (denoising)

 x = {x1, x2,…, xM},     xk  RM  e.g.  Pixel true luminance

 yn = {yn1, yn2,…, ynM}     ynk  RN  e.g.  Pixel measured luminance (noisy)

 -> Determining x is a denoising problem (the measuring device introduces only 

  measurment error) y = Ax => y = Ix.

Role of I:

- Identity matrix. Reproduces the input image, x, in the output y. 

Role of : measurement noise.

 yn = y +  = I x+   

Determining x is a denoising problem (image is a copy of the real one with the addition of noise)

yn y=x
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Esempio più generale (e.g. deblurring)

 x = {x1, x2,…, xM},     xk  RM  e.g.  Pixel true luminance

 yn = {yn1, yn2,…, ynM}     ynk  RN  e.g.  Pixel measured luminance (noisy)

 yn = y +  = A x +  + h -> determining x is a deblurring problem (the measuring device 

   introduces easurment error and some blurring)

 This is the very general equation that describes any sensor.

Role of A:

- Matrix that produces the output yi as a linear combination of other values of x.

Role of h: offset: background radiation (dark currents) has been compensated by calibration, 

regulation of the zero point.

Role of  : measurement noise.

 yn = y +  = A x+  after calibration

Given the measurements {yn} we want to 

compute the most likelihood set of data {x}
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Gaussian noise and likelihood

 Images are composed by a set of pixels, x

 Let us assume that the noise is Gaussian and that its mean and variance is equal 

for all pixels;

 Let us suppose that noise on the pixels is independent.

 Let yn.i be the measured noisy value for the i-th pixel;

 Let xi = yi be the true (noiseless) value for the i-th pixel;

 How can we quantify the probability to measure the image x, given the 

probability density function for the measurement of each pixel yn?

 Which is the joint probability of measuring the set of pixels: y1n… yNn?

yn x
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Gaussian noise and likelihood

 Images are composed by a set of pixels, x

 Let us assume that the noise is Gaussian and that its mean and variance is equal for all 

pixels;

 Let us suppose that noise on the pixels is independent.

 Let yn.i be the measured noisy value for the i-th pixel;

 Let xi = yi be the true (noiseless) value for the i-th pixel;

 Being the pixels independent, the total probability can be written in terms of product of 

independent conditional probabilities (likelihood function) L(yn | y)  L(yn | x) :

 L(yn | x) describes the probability to measure the image yn (its N pixels), given the noise 

free value for each pixel, {x}. 

 But we do not know these values….

𝐿 yn|x = ෑ

𝑖=1

𝑁

𝑝 𝑦𝑛,𝑖|𝑥𝑖 = ෑ

𝑖=1

𝑁
1

𝜎 2𝜋
exp −

1

2

𝑦𝑛,𝑖 − 𝑥𝑖

𝜎

2

= y
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Do we get anywhere with L(.)?
L is the likelihood function of Y, the image measured by the camera, given the object X, the 

true image.

Determine {xi} such that L(.) is maximized. Negative log-likelihood is usually considered to 
deal with sums instead of products:

min(f.)) = min − σ𝑖 𝑙𝑛
1

2𝜋𝜎2
+

1

𝜎2 𝑦𝑛𝑖 − 𝑓(𝑥𝑖) 2

min(f.)) = min − σ𝑖 𝑙𝑛
1

2𝜋𝜎2
+

1

𝜎2 𝑦𝑛𝑖 − 𝑥𝑖
2

If the pixels are independent, the system has a single solution, that is good. The solution is 
xi = yn,i, not a great result (the noisy image itself)….

Can we do any better?

( ) ( )
=

=
N

i

iinn xypxyL
1

, ||

( )( )
=

−=−=
N

i

iin xypLf
1

, |ln(.))log((.)

y = f(x)

 if A = I

y = x  =>  yn= x + n

{x} {x}

{x} {x}
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A better approach

( ) ( )
=

=
N

i

iinn xypxyL
1

, ||

We have N pixels, for each pixel we get one measurement. 

Let us analyze the probability for each pixel i indipendently:                 . If we have more 

measurements for each pixel. For each pixel, we can write:

( )iin xyp |,

( ) ( )
=

=
M

k

iikniMinininin xypxpppyp
1

,,,,3,,2,,1,, ||;......;;

Let us analyze the pixel i. If noise is independent, Gaussian, zero mean, the best estimate of 

xi is the samples average, this converges to the distribution mean of the measurements in 

the position i. 

From variance analysis, the accuracy of the estimate increases with 
2

𝑀 with M number of 

samples of the same data. The variance increases linearly with 0
2, but decreases with M.

But, what happens if we do not have such multiple samples or we have a few samples?

𝑥𝑖 = ෍

𝑘

𝑀

𝑦𝑛,𝑘,𝑖min(f.)) = min − σ𝑖
1

𝜎2 𝑦𝑛𝑖 − 𝑥𝑖
2
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The Bayesian framework

We assume that the object x is a realization of the “abstract” object X that can be 

characterized statistically as a density probability on X. x is considered extracted 

randomly from X (a bit Platonic).

The probability p(yn| x) can be viewed as a conditional probability: p(yn| x = x*) 

That is x will follow also a probability distribution. We will have p(x) = ….

Under this condition, the probability of observing yn can be written as the joint probability of 

observing both yn and x. This is equal to the product of the conditional probability           

by a-priori probability on x, p(x):

p(yn, x) = )()|( xpxyp n

)|( xyp n
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The Bayesian framework

The probability of observing yn can be written as the joint probability of observing both yn

and x is equal to the product of the conditional probability                by an a-priori 

probability on x, px:

p(yn, x) =

As we are interested in determining x, inverse problem, we have to write the conditional 

probability of x, having observed (measured) yn : p(x | yn). We apply Bayes theorem:

)()|( xpxyp n

( )
)(

)(
)|(

)(

)()|(
| 0

n

n

n

n
n

yp

xp
xyJ

yp

xpxyp
yxp ==

)|( xyp n

where p(yn| x) is the conditional probability:  J0 = p(yn| x = x*) 
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MAP Estimate

Vogliamo trovare il valore dei dati {x} più probabile congruente con le misure {y}:

max
𝑥

𝑝 𝑥 𝑦𝑛 = max
𝑥

𝑝 𝑦𝑛|𝑥
p(x)

p(𝑦𝑛)

max
𝑥

{ (x|yn)} = max
𝑥

ෑ

𝑖

𝑝 yn,i |xi

𝑝 xi

𝑝 yn,i
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MAP Estimate

Logarithms help:

( )( )
( )

( ) ( ) ( ) 
( | ) ( )

ln | ln ln ( | ) ln ( ) ln ( )
( )

n

n n n

n

p y x p x
p x y p y x p x p y

p y

 
− = − = − + − 

 

We maximize the p(x | yn), by minimizing: 

( ) ( ) ( ) )(ln)(ln)|(ln
)(

)()|(
ln minargminarg nn

xn

n

x

ypxpxyp
yp

xpxyp
−+−=



















−

We explicitly observe that the marginal distribution of yn, p(yn), is not dependent on x. It does 

not affect the minimization and it can be neglected. It represents the statistical distribution of the 

measurements alone, implicitly considering all the possible x values.

Maximizing p(x | yn) is called Maximum A-Posteriori Estimate – MAP (we callect the 

measurements yn and then we estimate x taking into account also the information on x).

( )
)(

)(
)|(

)(

)()|(
|

n

n

n

n
n

yp

xp
xyL

yp

xpxyp
yxp ==

X

ln(ab/c) = ln(a) + ln(b) – ln(c)
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MAP estimate components

We maximize the MAP of p(x | yn), by minimizing: 

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

A-priori

probability on x

Depending on the shape of the noise (inside the conditional probability) and the a-priori 

distribution of x(.), JR(x), we get different solutions.

( )xyJ in |,0
( )xJ R
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Gaussian noise on samples

( )  ( ) ( ) 

( ) ( ) =+

=+−=−=

xJxyJ

xpxypxpxyp

Rn

x

n

x

n

x

x

|

)(ln)|(ln)()|(ln

0minarg

minargminarg

• Gaussian noise on the data

• Zero mean

• All measurements have the same variance, 
2

• Pixels are independent

• y = Ax – deblurring problem (A ≠ I)

( )













−








+= 

2

,20

1
tancos|

i

iinn AxytexyJ


-log (p(yn | x)) =  

Mean squared error – errore empirico

What about JR(x) = -log(p(x))? 

𝐽0 𝑦𝑛|𝑥 = 𝑐𝑜𝑠𝑡 +
1

𝜎2 ෍

𝑖

𝐴𝑥𝑖 − 𝑦𝑛,𝑖
2

yi
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Gibb’s priors for p(x)

We often define the a-priori term, JR(x), as Gibb’s prior: 

















=








− )(

1

1
xU

x
e

Z
p




+

−

−

= dxeZ
xU )(

1



U(x) è solitamente  0

E’ una funzione esponenziale decrescente che è massima quando U(x) è minima 

(max e-U(x) si ha quando U(x) = 0) 

U(x) sarà perciò minimo per le realizzazioni di x (dell’immagine) più probabili.

U(x) è chiamato anche potenziale => potenziale minimo per realizzazioni più probabili. 

Integrale = 1
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Gibb’s priors for p(x)

We often define the a-priori term, JR(x), as Gibb’s prior: 

















=








− )(

1

1
xU

x
e

Z
p




+

−

−

= dxeZ
xU )(

1



 JR(x) is a linear function of the potential U(x). It is minimum when U(x) is minimum.

Z does not depend on x => it is constant

 is a constant that provides a scale to JR(x).  

 Explains how p(x) decreases with the decrease of the probability of x, described by U(x)).

( ) ( ) )(
1

lnln)( xUZpxJ xR 
++=−=

Considerando il negativo del logaritmo di p(x):
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A-priori types – p(x)

p(x) describes the probability of having a certain type of data X. In this case it describes 

the probability of having one image or another.

 It can be the amplitude of the signal defined in terms of power.

 It can be the geometrical structure defined in terms of variations (gradients)

 It can be information gathered from the neighbour data (e.g. clique).

 Any statistical information on the distribution of x.

 It can be a morphable model

 …..
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MAP estimate components

We maximize the MAP of p(x | yn), by minimizing: 

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

A-priori

probability on x

Depending on the shape of the noise (inside the joint probability) and the a-priori 

distribution of x(.), JR(x), we get different solutions.

( )xyJ in |,0
( )xJ R
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p(x) in the Ridge regression

















=








−

21

1
)(

Px

e
Z

xp


Nel caso del filtraggio: P = I, peso tutti i pixel dell’immagine allo stesso modo (P = I)

We choose as a-priori term the squared norm of the function x, weighted by P: U(x) = ||Px2||

Non voglio pixel che “sparino” – non voglio avere dati con valori troppo più elevati degli

altri, questi sono improbabili (alto potenziale U(x), basso valore di JR(x) ).

La probabilità a-priori è distribuita come una Gaussiana.

JR(x) = -log(p(x)) = log(Z) + (1/) ||Px2||

JR(x) =-log(p(x)) =  log(Z) + (1/) ||x2||
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Map estimate with U(x) = ||Px||2

Funzione costo quadratica

Adherence to the data for 

each x value (conditional 

probability)

A-priori

probability on x

( )xyJ in |,0
( )xJ R

𝑥 = argmin
𝑥

෍

𝑖

1

𝜎𝑜
2 𝐴𝑥𝑖 − 𝑦𝑛,𝑖

2

+
1

𝛽
෍

𝑖

𝑝𝑖𝑖𝑥𝑖
2

In forma matriciale:

𝑥 = argmin
𝑥

1

𝜎𝑜
2 𝐴𝑥 − 𝑦𝑛

2 +
1

𝛽
𝑃𝑥 2
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MAP estimate with U(x) = ||Px||2

𝑥: 𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑦𝑛 + 𝜆𝑃𝑇𝑃𝑥 = 0 => 𝐴𝑇𝑦𝑛 = 𝐴𝑇𝐴 + 𝜆𝑃𝑇𝑃 𝑥

Funzione costo quadratica

Derivo rispetto a x per calcolare il minimo:

( )xyJ in |,0 ( )xJ R

Pongo  = 𝜎𝑜
2 /

Without  PT P large values of x are obtained where ATA is small. These are reduced by  PT P

𝑥 = argmin
𝑥

෍

𝑖

1

𝜎𝑜
2 𝐴𝑥𝑖 − 𝑦𝑛,𝑖

2

+
1

𝛽
෍

𝑖

𝑝𝑖𝑖𝑥𝑖
2

𝑥 = argmin
𝑥

1

𝜎𝑜
2 𝐴𝑥 − 𝑦𝑛

2 +
1

𝛽
𝑃𝑥 2
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Map estimate with U(x) = ||Px||2

Funzione costo quadratica

( )xPPAAyAPxPAxAyAx TT

n

TTT

n

T  +===+− 0:

x = (ATA+PTP)− ATyn --- 

 (diventa risolubile anche quando A è singolare! – norma minima della soluzione) 

 (ottengo una soluzione che «scoraggia» i valori elevati di x).

 (per  = 0 ritorno alla soluzione con la pseudo-inversa, massima verosimiglianza; 

  non tengo conto del termine a-priori).

𝑥 = argmin
𝑥

෍

𝑖

1

𝜎𝑜
2 𝐴𝑥𝑖 − 𝑦𝑛,𝑖

2
+

1

𝛽
෍

𝑖

𝑝𝑖𝑖𝑥𝑖
2

_
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Approccio algebrico
22

|||| bAx
k

k −=A x = b + N

𝑎𝑟𝑔𝑚𝑖𝑛 ෍

𝑖

𝐴∗,𝑖𝑥𝑖 − 𝑦𝑛,𝑖
2

x=
x

x = (ATA)-1ATyn

Se la matrice di covarianza ha determinante vicino a zero (è mal condizionata) la soluzione

può variare molto con il variare dei dati. Otteniamo un modello la cui validità al di fuori

dei dati già disponibili è molto limitata sui dati che si potranno collezionare in futuro.

Problema mal posto (Hadamard).

- Esiste una soluzione

- La soluzione è unica

- Varia con continuità con i dati (se ATA è vicino alla singolarità, il problema è mal posto)

Come possiamo stabilizzare la soluzione?
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Approccio algebrico: regolarizzazione

We add a penalty term to the solution that expresses the desired characteristics 

of the solution.

This is the Tikhonov regularization (1963) or ridge regression.

It is the same cost function obtained when maximizing the MAP with Gibbs prior 

and quadratic potential function.

22
|||| bAx

k

k −=A x = b + N

x=
x

x = (ATA)-1ATyn𝑎𝑟𝑔𝑚𝑖𝑛 ෍

𝑖

𝐴∗,𝑖𝑥𝑖 − 𝑦𝑛,𝑖
2

𝑥 = argmin
𝑥

෍

𝑖

𝐴𝑥𝑖 − 𝑦𝑛,𝑖
2

+ 𝜆 ෍

𝑖

𝑃𝑥𝑖
2
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Which is the most adequate p(x) for 
images?

We are very interested to borders, structure. This has to deal with gradients. 

=> we look at differential properties.

We look at the local gradient of the image: x (variazioni spaziali).

One possibility is to use the square of the gradient as a regularizer ( o come 

funzione potenziale): || x  ||2

This is another form of Tikhonov regularization.
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Differential Gibbs prior



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



=








− )(

1

1
xU

x
e

Z
p




+

−

−

= dxeZ
xU )(

1



U(x) = 
2|||| x

( ) 

( )  022:

22minarg

=+−

+−

xyAxAx

xyAx

n

T

n

x





System of M linear differential equations. How does it become in the discrete case?
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Differential Gibbs prior

( ) 

( )  022:

22minarg

=+−

+−

xyAxAx

xyAx

n

T

n

x





If we apporximate x with the finite differences, one possibility is the following:

2 2 2

, 1, 1, , 1 , 1|| || ( ) ( )i j i j i j i j i jx x x x x+ − + − = − + −

( ) ( )
2

2 2

, 1 , 1 1, 1,( ) ( )arg min ji i j i j i j i j i j

j ix

A x y x x x x + − + −

 
− + − + − 

 


Si può calcolare la derivate della somma, derivando per ciascun elemento x e 

ponendo la derivate uguale a zero. Diventa un sistema lineare. 

Centered discrete gradient
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px = p(i,j) – p(i-1,j) py = p(i,j) – p(i,j-1)

A priori term – image gradients 
(no noise)
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A priori term – image gradients 
(with noise)

2
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xx
x

−+ −
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jiji

col

xx
x
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A priori term – norm of image 
gradient

No noise Noise

In the real image, most of the areas are characterized by an (almost) null gradient norm.

When noise is added, local gradients appear everywhere in the image (real case).

We can for instance suppose that the noise is a random variable with Gaussian

distribution, zero mean and variance equal to 2 (sampling noise).

Which is the best approach to clean noise (e.g. to recover the true value of x)?
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Overview

Statistical filtering

MAP estimate

Different noise models

Different regularizators

Clique
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MAP estimate components

We maximize the MAP of p(x | yn), by minimizing: 

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

A-priori

probability on x

( )xyJ in |,0
( )xJ R
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Tikhonov regularization

It is a quadratic cost function. We find x minimizing with respect to x the cost function.

This approach is derived in the domain of mathematics. It leads to the same cost 

function of the MAP approach.

𝑥 = argmin
𝑥

෍

𝑖

𝐴𝑥𝑖 − 𝑦𝑛,𝑖
2

+ 𝜆 ෍

𝑖

𝑃𝑥𝑖
2

𝑥 = argmin
𝑥

෍

𝑖

𝐴𝑥𝑖 − 𝑦𝑛,𝑖
2

+ 𝜆 ෍

𝑖

𝛻𝑥𝑖
2

Ridge regression
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Departing from Tikhonov 
regularization: different noise models

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

( )xyJ in |,0
( )xJ R

Two actors:

- Conditional probability of having the measurements given a certain input.

- We can have different noise models.

- Probability of having a certain solution.

- We can have different regularizers

( )xyJ in |,0

( )xJ R
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Gaussian noise:

In caso di rumore di Poisson? 

Different noise models

( )xyJ in |,0
( )xJ R

Square regularization

Tikhonov

Ridge regression

22
|||| bAx

k

k −=

y = f(x) => y = Ax

= (1/) ||Px2||

( )xyJ in |,0

22
|||| bAx

k

k −= ( )xJ R = (1/) ||x2||

Empirical error=σ𝑖 𝐴𝑥𝑖 − 𝑦𝑛,𝑖
2

( )xyJ in |,0
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KL and the Poisson noise

i = ||A x – yni ||

We know the statistical distribution of the noise inside the conditional probability of yni

given x.

For one pixel: p(yni |  xi) =
( )

!

nii

i

yAx

i

n

e Ax

y

−  
 
  

ln n
n n

i

y
y Ax y

Ax

 
= + − 

 


( )( ) ( ) ( )( ), , ,

11

ln ; ln ; ln( ) ln !
N N

n n i i i n i i n i

ii

L y x p y x Ax y Ax y
==

 
− = − = − − + − 

 


To eliminate the factorial term, we normalize the likelihood by L(yn, yn):

( )
1,

( , )
ln ln( ) ln( )

( )

N
n

n n n

in n

L y x
y Ax y y Ax KL divergence

L y y =

 
− = − − + − =  

 


It is not a distance!

It is not linear!

P(ym)

y=Ax
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Tikhonov regularization - simulations

Edge smoothing effect with Tikhonov-like regularizator (P(x) = || 𝜵x ||2 )

Poisson noise on the image –  = 0.5. KL is applied in the first term.

P is the gradient operator
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Tikhonov regularization – panoramic images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model -  = 0.5. KL is applied in the first term.

P is the gradient operator
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Tikhonov regularization - endo-oral images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model -  = 0.1 (less regularization) 

KL is applied in the first term.

P is the gradient operator
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Overview

Statistical filtering

MAP estimate

Different noise models

Different regularizators

Clique
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Departing from Tikhonov 
regularization: different regularizers

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional probability)

( )xyJ in |,0
( )xJ R

Two actors:

- Conditional probability of having the measurements given a certain input.

- We can have different noise models.

- Probability of having a certain solution.

- We can have different regularizers

( )xyJ in |,0

( )xJ R
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Non-quadratic a-priori: 
norm l2

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

( )xyJ in |,0
( )xJ R

( )xJ R =

Norma l2 di x 

La norma l2 di x è minima.

෍

𝑖

2
𝑥1

2 + 𝑥2
2 + … 𝑥𝑁

2
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Non-quadratic a-priori: 
total variation

( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

Adherence to the data for 

each x value (conditional 

probability)

( )xyJ in |,0
( )xJ R

( )xJ R =

Norma l2 delle variazione di x o variazione totale di x (total variation)

Il modulo della somma degli incrementi (in valore assoluto) di x è minima.

2
∆𝑥1

2 + ∆𝑥2
2 + … ∆𝑥𝑁

2
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Noise model        Gaussian

Different a-priori 

( )xyJ in |,0 ( )xJ R

Regularizer

Tikhonov

Ridge regression

22
|||| bAx

k

k −=

y = f(x) => y = Ax

= (1/) ||Px2||

( )xyJ in |,0

22
|||| bAx

k

k −= ( )xJ R
= (1/) ||x2||

Lasso regression ( )xyJ in |,0
22

|||| bAx
k

k −= ( )xJ R
= (1/)

l2 (total variation)

regularization
( )xyJ in |,0

22
|||| bAx

k

k −= ( )xJ R = (1/)
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Cost introduced by the regularization term

Cost increases quadratically with the local gradient in Tikhonov

Cost increases linearly with the local gradient in Total Variation (TV)

For this reason TV regularizer is considered “edge preserving” (structure preserving) 
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Tikhonov regularization - simulations

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model –  = 0.5

P is the gradient operator

Noise is removed 

but

blurring is 

introduced
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Total variation regularization - simulations

No appreciable edge smoothing with total variation regularizer

Poisson noise model -  = 0.5

P is the gradient operator

Noise is removed 

and 

no appreaciable 

blurring is 

introduced
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Tikhonov regularization – panoramic images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model -  = 0.5

P is the gradient operator
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Total variation regularization – panoramic 
images

No appreciable edge smoothing with total variation regularizer

Poisson noise model -  = 0.5

P is the gradient operator

56/71 http:\\borghese.di.unimi.it\A.A. 2025-2026

Tikhonov regularization - endo-oral images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model -  = 0.1

P is the gradient operator
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Total variation – endo-oral images

No appreciable edge smoothing with total variation regularizer

Poisson noise model -  = 0.1

P is the gradient operator
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Tikhonov vs. TV (preview)
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Open problems in TV

 Better images with TV regularizer, but:

Non linear cost functions (non quadratic) also with Gaussian noise model 

Minimization does not lead to a linear function (because of the square root) ➔

It requires non-linear iterative minimization.

The derivative of a square root provides a function of the type k/sqrt(.)

Singularity in x = 0 → x ≠ 0

We can use algorithms for constrained minimization (e.g. for images, the solution 

should stay inside the first quadrant, e.g. split gradient -> x>0 for all pixels).

2 2

,arg min
P

n p i

i px

y Ax xx 
 

− + 
 
 

=  
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( )  ( ) ( ) )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x

+−=−

How to set the regularization 
parameter ( = 1/)

Tikhonov

Ridge regression

)()()( fJfJfJ Ro +=

Noise model        Gaussian

( )xyJ in |,0 ( )xJ R

Regularizer

22
|||| bAx

k

k −= = (1/) ||Px2||

( )xyJ in |,0

22
|||| bAx

k

k −= ( )xJ R
= (1/) ||x2||

Lasso regression ( )xyJ in |,0
22

|||| bAx
k

k −= ( )xJ R
= (1/)

l2 (total variation)

regularization
( )xyJ in |,0

22
|||| bAx

k

k −= ( )xJ R = (1/)
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Role of 
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1
ln

fU

e
Z



 incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with 

their cost ()

- the normalized constant Z.

 has been investigated in the classical regularization theory (Engl et al., 1996), 

but not as deep in the Bayesian framework ➔  is set experimentally through 

cross-validation.

J(x) = J0(x) + JR(x) 
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How to set the regularization 
parameter – Gaussian case

Analysis of the residual after the estimate n = y- Ax 

• The residual should be distributed as the noise distribution

Gaussian case:

Start with  = 0 -> x minimizzerà la likelihood J0(x) = 0 (n = 0).

Is this a good solution? No!!

We are reconstructing the data and the error. The latter is usually rapidly varying 

(e.g. grain images)

We get a better result if we throw away from x the error. This happens when n ≠ 0. 

Increasing , we penalize rapid variations -> J0(x) increases,  n increases -> it 

approaches the shape of the measurement error.

We stop when 

• (ri, rj) =  2   (||r||2 = 2)

• Sample covariance is equal to distribution covariance

• Average value of the residual is zero,

22
|||| bAx

k

k −= +J(x)
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How to set the regularization 
parameter – Poisson case

Analysis of the residual after the estimate n = y - Ax 

• The residual should be distrubuted as the noise distribution

Poisson case:

• ri tends to be larger, the larger is xi. 

•  is increased until ||r||2 /  -> 1  (the mean is equal to variance)

1 parametro (media = varianza):

 = 2
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Overview

Statistical filtering

MAP estimate

Different noise models

Different regularizators

Clique
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A-priori on cliques

We can insert in the a-priori term all the desirable characteristic of the image: local smoothness, 
edges, piece-wise constancy,….

The idea of defining a neighboring system is a natural one:

Images have a natural neighbouring system: the pixels structure. We want to consider the local 
properties of the image considering neighboring pixels (in particular differential properties -
our vision system is particularly tuning to gradients both spatial and temporal). Ideas have 
been borrowed from physics.

Neigbour region of Sk
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Neighboring System

Let P be the set of pixels of the image: P = {p1, p2, … pP}

The neighboring system defined over P, S, is defined as H = {Np | p, p  P}, that has 

the following properties:

An element is not a neighbour of itself: pk  Npk

Mutuality of the neighboring relationship: pk  Npj   → pj  Npk

(S, P) constitute a graph where P contains the nodes of the graph and S the the links.

Depending on the distance from p, different neighboring systems can be defined:

o o o

o x o

o o o

Second order neighboring System

8-neighboring System

o

o x o

o

First order neighboring System

4-neighboring System
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Clique
Borrowed from phisics.

A clique C, for (S, P), is defined as a subset of sites in S. 

I can considered ordered sets of voxels, that are connected to p through S.

Types of cliques: single-site, pairs of neighboring sites, triples of neighboring sites,… up to 

the cardinality of Np
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Markov Random Field

Given (S, P) we can define a set of random values, {fk(p)} for each element defined by 

S, that is in Np. Therefore we define a random field , F, over S:

F(Np) = {fk(m) | m  Np } p

Under the Markovian hypotheses:

P(f(p))  0 p Positivity

P(f(p) | g(P-{p})  = P(f(p) | g(Np)} Markovianity

2 expresses the fact that the probability of p assuming a certain value, f (e.g. a certain 

gradient), is the same considering all the pixel of P but p or only the neighbor pixels 

is the same, that is the value of f depends only on the gray value of the pixels in Np.

the random field F is named Markov Random Field.
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Energy in a Markov Random Field

A “potential” function, (f), can be defined for a MRF. This is a scalar value that is a 

function of the random value associated to the pixels for all the possible elements of 

a clique:

c(f) = 
cj

jpf )(

If we consider all the possible cliques defined for each element p, we can define a 

potential energy function associated to the MRF:

U(f) =

The higher is the potential energy, the lower is the probability that the set of random 

values of the elements of the cliques is realized, that is the higher is the penalization 

for the associated configuration.


Cc

(f)c
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Gibbs prior

If we consider all the possible cliques defined for each element p, we can define a 

potential energy function associated to the MRF:

U(f) =

The higher is the potential energy, the lower is the probability that the set of random 

values of the elements of the cliques is realized, that is the higher is the penalization 

for the associated configuration.

This is well captured by the Gibbs distribution, that describes the probability of a 

certain configuration to occur. It is a function exponentially decreasing of U:

P(f) = 

P(f) is a Gibbs random field, Hammersley-Clifford theorem (1971).  regulates the 

decrease in probability and it is associated with temperature in physics. Z is a 

normalization constant. NB to define Gibbs random fields, P(f) > 0, P(f) → 0 U(f) 

→ : there are not configurations with 0 probability.


Cc

)(c f



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